

ARPA-E Batteries for Electrical Energy Storage in Transportation Project Summaries

For inquiries:

WEB:

www.arpa-e.energy.gov

EMAIL:

Project Title	Novel High Energy Density Lithium Ion Cell Designs via Innovative Manufacturing
1 Toject Title	
	Process Modules for Cathode and Integrated Separator
Organization	Applied Materials, Inc.
Website	http://www.appliedmaterials.com/
Point of	Dr. Connie Wang
Contact	
Project	Applied Materials Inc. will lead an effort to develop ultra-high energy low cost lithium-
Description	ion batteries enabled by disruptive new manufacturing processes. This novel
	approach will focus on developing a high energy density porosity-graded cathode on
	3D current collectors, an integrated separator, and a suite of modular manufacturing
	processes that have the potential to transform lithium-ion battery manufacturing
	technology. These high energy cathodes will be incorporated with new high capacity
	anodes to demonstrate prototype manufacturing of high energy lithium-ion cells with
	energy density greater than 400 Wh/kg and extremely low cost. If successful, this
	project will establish U.S. leadership in the manufacturing of high energy, low cost
	advanced lithium-ion battery technology for electric vehicles.

WEB:

www.arpa-e.energy.gov

EMAIL:

Project Title	Semi-Solid Rechargeable Power Sources: Flexible, High Performance Storage for
	Vehicles at Ultra-Low Cost (<\$0.10/Wh)
Organization	Massachusetts Institute of Technology
Website	http://web.mit.edu/
Point of	Dr. Yet-Ming Chiang
Contact	
Project	Researchers at the Massachusetts Institute of Technology, in collaboration with A123
Description	Systems and Rutgers University, will seek to develop a revolutionary new electrical energy storage concept for transportation that combines the best attributes of rechargeable batteries and fuel cells. This technology incorporates semi-solid high
	energy density rechargeable, renewable and recyclable electrochemical fuel in a flow system that decouples power from stored energy. Early stage results suggest that high energy density and system costs less than \$100/kWh can be obtained, which would enable rapid widespread adoption of electric vehicles.

WEB:

www.arpa-e.energy.gov

EMAIL:

Project Title	High Performance Cathodes for Li-Air Batteries
Organization	Missouri University of Science and Technology
Website	http://www.mst.edu/
Point of	Dr. Yangchuan Xing
Contact	
Project	Researchers at the Missouri University of Science and Technology will lead a multi-
Description	disciplinary team to develop a disruptive new high energy air cathode to enable the
	successful development of ultra-high energy Lithium-Air batteries. Lithium-Air
	batteries have extremely high theoretical energy densities (5,000-12,000 Wh/kg)
	approaching those of gasoline due to the use of a high capacity lithium anode and
	oxygen from the air. However, existing Lithium-Air technologies have exhibited very
	low power, round trip efficiency, and cycle life due to severe performance limitations
	at the air cathode. In this project, researchers will seek to dramatically improve
	Lithium-Air air cathode performance through the development of a new hierarchical
	electrode structure to enhance oxygen diffusion from the air and novel high
	performance bifunctional oxygen reduction and evolution catalysts. If successful, this
	project will dramatically improve the state of the art in ultra high energy Lithium-Air
	batteries and will re-establish U.S. technology leadership in this potentially disruptive
	battery technology for long range all-electric vehicles.

WEB:

www.arpa-e.energy.gov

EMAIL:

Project Title	Low-Cost Rechargeable Magnesium Batteries with High Energy Density
Organization	Pellion Technologies, Inc.
Point of	Prof. Gerbrand Ceder
Contact	
Project	Pellion Technologies Inc., an MIT spin-out company, will develop inexpensive high-
Description	energy-density rechargeable magnesium-ion batteries with the potential to disrupt
	current energy storage technologies for electric and hybrid-electric vehicles. To
	develop a game-changing magnesium-ion battery, Pellion will leverage high
	throughput computational materials design coupled with accelerated materials
	synthesis and electrolyte optimization to identify new high-energy-density
	magnesium cathode materials and compatible electrolyte chemistries. If successful,
	this project will develop the first commercial magnesium-ion battery and will establish
	U.S. technology leadership in this exciting new high energy battery chemistry for
	electrified vehicle applications.

WEB:

www.arpa-e.energy.gov

EMAIL:

Project Title	Solid-State All Inorganic Rechargeable Lithium Batteries
Organization	Planar Energy
Website	http://www.planarenergy.com/
Point of	Dr. Isaiah Oladeji
Contact	
Project	Planar Energy Devices, Inc, an Orlando, FL based early stage battery technology
Description	company, will seek to develop an ultra high energy, long cycle life all solid-state
	lithium battery that can manufactured using low cost non-vacuum fabrication
	techniques, targeting energy densities of 400Wh/kg and 1,080Wh/liter; system costs
	of \$200/kWh, and cycle life of 5,000, Planar Energy Devices will demonstrate pilot
	manufacturing of these disruptive new batteries using a low cost roll-to-roll process in
	ambient environment, all inorganic materials, and solid state electrolytes whose ionic
	conductivity is similar to existing liquid electrolytes. If successful, this project will
	establish the U.S. as a leader in advanced high energy battery technology and low cost
	manufacturing processes in batteries for electrified vehicles.

WEB:

www.arpa-e.energy.gov

EMAIL:

Project Title	Development Of Ultra-high Specific Energy Rechargeable Lithium/Air Batteries Based
	On Protected Lithium Metal Electrodes
Organization	PolyPlus Battery Company
Website	http://www.polyplus.com/
Point of	Dr. Steven Visco
Contact	
Project	PolyPlus Battery Company and Corning Incorporated will work together to achieve
Description	transformational improvements in rechargeable Li-Air battery technology. PolyPlus's
	lithium-air batteries based on proprietary protected lithium electrodes and Corning's
	specialization in glass, ceramics, and record of moving technology from laboratory to
	manufacturing have great promise for advancing Li-Air technology, which holds
	promise to rival the energy density of gasoline. With a clear path to commercialization
	this technology hopes to revolutionize Li-Air batteries for electric vehicle applications.

WEB:

www.arpa-e.energy.gov

EMAIL:

Project Title	High Energy Density Capacitors
Organization	Recapping, Inc.
Point of	Dr. Clive Randall
Contact	
Project	Recapping Inc. and researchers at Pennsylvania State University will seek to develop a
Description	novel energy storage device based on a 3D nanocomposite structure with functional oxides that provide a very high effective capacitance. The basic fabrication of the dielectric materials and devices will utilize traditional multilayer ceramic fabrication methods that will provide a cost effective alternative to battery solutions, with added benefits of exploiting mechanisms that could maintain higher cycling and possibly deliver charge with high power density. This technology hopes to create a cyclable and economically competitive energy storage device that will catalyze new, related cleantech industries and contribute to the reduction of greenhouse gases and oil imports.

WEB:

www.arpa-e.energy.gov

EMAIL:

Project Title	Zinc Flow Air Battery (ZFAB), the Next Generation Energy Storage for Transportation
Organization	ReVolt Technology LLC
Website	http://www.revolttechnology.com/
Point of	Dr. Trygve Burchardt
Contact	
Project	ReVolt Technology will develop a novel large format high-energy zinc-air flow battery
Description	for long all-electric range Plug-In and All Electric vehicles. This novel high energy
	battery concept is based upon a closed loop system in which the zinc (anode),
	suspended as slurry in a storage tank, is transported through reaction tubes (cathode)
	to facilitate the discharge and recharge of the battery. ReVolt's fundamental
	breakthroughs in air electrodes enable a new class of high-energy rechargeable
	battery systems that combines key innovations from the fields of fuel cells and
	batteries.

WEB:

www.arpa-e.energy.gov

EMAIL:

Project Title	Development of High Energy Li-S Cells for Electric Vehicle Applications
Organization	Sion Power Corporation
Website	http://www.sionpower.com/
Point of	Dr. John Affinito
Contact	
Project	Sion Power Corporation, a Brookhaven National Laboratory spin-out company, will
Description	develop an ultra-high energy Lithium-Sulfur battery able to power electric vehicles more than 300 miles between charges, with and energy density of 500Wh/kg that is 3x that of current Li-ion batteries. While the high energy potential of Lithium-Sulfur is well known, Sion Power's proprietary strategy, focusing on a manufacturable approach to lithium anode protection and employing six different physical barrier layers, highly differentiates Sion's approach from all other Lithium-Sulfur efforts. These strategies directly address cycle life and safety while also allowing higher energies. If successful, this project will clearly assert U.S. technology and commercialization leadership in ultra-high energy batteries for electrified vehicles.

WEB:

www.arpa-e.energy.gov

EMAIL:

Project Title	The All-Electron Battery: a quantum leap forward in energy storage
Organization	Stanford University
Website	http://www.stanford.edu/
Point of	Prof. Fritz Prinz
Contact	
Project	In this project, researchers Stanford University will seek to develop an "All-Electron
Description	Battery", a completely new class of electrical energy storage devices for electric
	vehicles that has the potential to provide ultra-high energy and power densities, while
	enabling extremely high cycle life. The All-Electron Battery stores energy by moving
	electrons, rather than ions, and uses electron/hole redox instead of capacitive
	polarization of a double-layer. This technology uses a novel architecture that has
	potential for very high energy density because it decouples the two functions of
	capacitors: charge separation and breakdown strength. If successful, this project will
	develop a completely new paradigm in energy storage for electrified vehicles that
	could revolutionize the electric vehicle industry and establish U.S. leadership in
	advanced energy storage technology for electric vehicles.

WEB:

www.arpa-e.energy.gov

EMAIL: